S.Y.B. Tech. Elect-sem III

Bharatiya Vida Bhavan's
Sardar Patel College of Engineering
(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.
End Sem November 2017

Max. Marks: 100
Class: S.Y.B.Tech
Semester: III
Name of the Course: Numerical Techniques
Course Code : BTE206

Duration: 3 hour
Program: Electrical
Master file.

Instructions:

- Question 1 is compulsory

- Attempt any 4 questions out of remaining 6 questions.
- Make suitable assumptions wherever necessary

3 a .	Solve dy/dx $=y-x$ with $y(0)=2$. Find solution for $x=0.2,0.4$ by 4 th order Runge - Kutta method. (take $\mathrm{h}=0.2$)	10	1	06
3 b .	Solve the following mesh problem to find the mesh currents I1, I2, I3 after 8 iterations using Gauss Seidal. Compare with the actual results and determine the error.	10	2,3	03
4 a.	The upward velocity of a rocket is given as a function of time in Table below Table: Velocity as a function of time Determine the value of the velocity at $t=16$ seconds using Lagrangian polynomial interpolation	10	2	04
4 b .	A new soda company collected data on their advertising expenditures (measured in Rs. 1000) and the month's sales (measured in Rs. 1000)for the past 6 months What is the linear regression equation? What is the expected sales if the company spends Rs. 6,100 in advertising?	10	2	04
5 a .	Explain different types of errors in numerical techniques. Derive the general error formula.	05	3	01

S.Y.B. Tech. Elect -Sem III

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mimbai-400058. Find Semester

Sem III
Max Marks: 60

Q2. Write MATIAB code using functions to lind whether the entered number is prime or not.
Q3. Write a $M \wedge T L A B$ program using functions to print the following
1
22
$3 \quad 3 \quad 3$
444
Q4. Write MATLAB code to solve three simultaneous equations using symbolic maths
Q5. Use "switch" statement and display the input numb
Q6. Write M $\triangle T A B$ code to plot the following ligure

Q7. Write MATLAB code to plot the following ligure

Q8. Explain how the first order differential equation with non zero initial conditions can be solved
S.Y.B Teeh. Eleet sem III

Bharaliya Vidya Bhavan's

Sardar Patel College of Engincering

(A Govermment Aided Autonomous Instimut
Munshi Ningar, Andheri (Wes), Mumbai-4000S:
Find Sem November 2017

Program: Electrical Enginecring

Course code: BTE202
Name of the Course: Electronic Circuits

Date:

Duration: 3 Hour
Maximum Marks: 100
Scmester: III
Master file.

Solve any five questions out of seven

$\left[\begin{array}{c} 0 . \\ \text { No. } \end{array}\right.$		$\begin{aligned} & \text { Mas } \\ & \text { Marky } \end{aligned}$	Course Number	Modure No.
1	State whether the following statements are truc/alse. Justify the same.			
A	Open loop opamp is used as amplifier at low frequency.	05	CO 4	106
B	Instrumentation amplifier is used in medical clectronics.	05	CO 4	06
C	The input impedance of a MOSFET is of the order of several MS2	05	CO_{2}	113
D	R_{E} in the differential amplifier cian be replaced by properly biased BJT	05	CO 3	02.0.4
$\begin{aligned} & 2 \\ & \mathrm{~A} \end{aligned}$	Determine the output voltage $V_{\text {ou }}$ if input voltage $V=10 \sin (w)$ Assume Si diodes with cut in voltage 0.7 V .	05	COI	11
B	Determine the circuit to get the output voltage U_{A} for the input voltage of U_{E}. Select proper component values. Explain the same.	05	CO 1	01

S.Y.B. Tech. sem IIIV Elat.

S.Y.B. Tech. Elect Sem III

S.Y.B. Tech. Elect. Sem III

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEMESTER Examination

November 2017

Maximum Marks: 100
Class: S.Y.B.Tech
Name of the Course: Engineering Mathematics III

Duration: 3 hour
Program:Electrical Engineering
Course Code : BTE201
Master file.

Instructions:

- Attempt any FOUR questions out of remaining SIX questions.
- Question number. 1 is compulsory.
- Answers to all sub questions should be grouped together.

S.Y B.Tech Elect Sem III
 Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Sem Exam
Nov 2017
Max. Marks: 100

Class: Second Year

Semester: III
Name of the Course: Integrated Circuits
Duration: $\mathbf{3} \mathbf{~ h r}$

Instructions:

Program: Electrical Engineering
Course Code : BTE204
Master file

- Question No. 1 is Compulsory.
- Solve any four of remaining six questions.
- Illustrate your answers with neat sketches wherever necessary.
- Assume suitable data if required.
- Preferably, write the answers in sequential order.

Question

M.N. CO Max.

Marks
No.
Q1.
A) Convert:

1) $(97)_{10}$ to Excess- 3 Code.
2) $(96)_{10}$ to Gray Code.
3) $(11011100.101010)_{2}$ to Decimal.
4) $(43)_{10}$ to Hexadecimal and BCD.
B) Write the equation for Y output of figure given below. 2 2 5 Minimize the equation using Boolean identity.

S.Y.B.Tech, Elect-sem III
C) Convert J-K flip-flop to T flip-flop.
D) Find the fan out, power dissipation, propagation delay, and noise margin for standard TTL gates.
Given: $\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{IH}}=40 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{CCH}}=1 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{CCL}}=3 \mathrm{~mA}, \mathrm{t}_{\mathrm{pHL}}=7 \mathrm{~ns}, \mathrm{t}_{\mathrm{pLH}}=11 \mathrm{~ns}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=$ $0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
Q2.
A) Explain with example subtraction using 2's complement method.
B) Convert:
5) $(3287.5100098)_{10}$ to Octal.
6) $(33 \mathrm{~A} .22 \mathrm{~F})_{16}$ to Decimal.
7) $(\mathrm{A} 72 \mathrm{E})_{16}$ to Octal.
8) Multiply 1001 by 1101 .
C) Reduce the following expression using K-map and $2 \quad 2 \quad \mathbf{1 0}$ implement as a SOP using AND/OR gate:

$$
\mathrm{F}=\sum(1,3,5,8,9,11,15)+\mathrm{d}(2,13)
$$

Q. 3
A) Implement OR gate using NAND gate only.
B) Write short note on Arithmetic Logic Unit. 2
C) Draw 8:1 multiplexer using logic gates along with its 3 2 5 3 2 5 truth table.
Q. 4
A) Explain the operation of 4-bit Adder/Subtractor using 3 2 5 full adder IC 7483.
B) Explain the operation of IC 74180 parity $\begin{aligned} & \mathbf{3} \\ & \mathbf{2}\end{aligned}$ checkers/generators. Write its function table.
C) Design synchronous 3-bit up/down counter using D $\quad 4 \quad 4 \quad 3 \quad 10$ flip-flop. Draw its timing diagram.

Q. 5

A) Design a 4-bit twisted ring counter using D flip-flop. Draw timing diagram and calculate propagation delay at last stage, if propagation delay of each flip-flop is 4 $\mu \mathrm{sec}$.
B) Define: Setup Time, Hold Time, Propagation Delay, 4 Clock Pulse Width, and Maximum Clock Frequency.
C) Define sink vertex and source vertex. Draw the state 4 diagram and write state table for J-K flip-flop.

Q:6 . S.YB Tech. Elect sem III
A) Explain Serial-In Serial-Out shift register using S-R Flip-Flop. Draw timing diagram with respect to negative edge triggered clock pulse.
B) Explain Bi-directional shift register using D flip-flop. $\begin{array}{lllll}5 & 3 & 10\end{array}$ Draw timing diagram with respect to negative edge triggered clock pulse for shift left operation.
Q. 7 Write short note on:
A) TTL open collector output NAND gate.
B) ECL
C) RAM Cell
$6 \quad 4 \quad 5$
D) ROM

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination
November 2017
Max. Marks: 100
Class: SY BTech
Name of the Course: Electrical Networks

Instructions:

Semester: III

- Attempt any FIVE question out of Seven questions
- Answers to all sub questions should be grouped together
- Figures to the right indicate full marks
- In the absence of any data, make suitable assumptions and justify the same.

$\begin{aligned} & \text { Q. } \\ & \text { No } \\ & \hline \end{aligned}$	Question	Max Marks	Mod No.
Q1a	In the network determine voltage V_{1} and V_{2} using superposition theorem.	10	01
b	Find Load Impedance Z_{L} for maximum power transfer. Also determine the maximum power drawn by the load.	10	01
Q2a	Derive an expression for resonant frequency of a Parallel RLC circuit.	03	03
b	In a series RLC network, $\mathrm{R}=100 \Omega, \mathrm{~L}=0.2 \mathrm{H}$ and $\mathrm{C}=40 \mu \mathrm{~F}$. Derive an expression for resonant frequency and calculate the resonant frequency, bandwidth, lower cut-off and upper cut-off frequency.	07	03

S.Y.B. Tech. Elect. Sem III

S.Y.B. Tech, Elect. Sem III

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058

End Semester Exam

November 2017
Program: S.Y. B. Tech.
Course code: BTE205
Semester: III
Name of the Course: Electrical Machines - I

Instructions: 1. Question No 1 is compulsory.

2. Attempt any four questions out of remaining six.

3. Figures to the right indicate full marks.

4. Assume suitable data wherever required and justify the same.

Question No.					Max. Marks	Course Outcome Number	Module No.
Q1	Explain the following. (Any Four)						
(a)	Transformer switching current transients.				05	02	04
(b)	Crawling phenomenon in induction motor.				05	03	06
(c)	Construction details \& application of dc motor.				05	01	07
(d)	Magnetic properties of material.				05	04	01
(e)	Phasor diagram of transformer with resistance and leakage reactance for lagging p.f. load.				05	02	03
Q2							
(a)	Derive the torque in singly excited magnetic field with respect to electromechanical energy conversion.				10	01	02
(b)	Explain the principle of electromechanical energy conversion and hence the expression of energy stored in magnetic field.				10	01	02
Q3							
(a)	Explain different transformer vector groups in detail with examples.				10	02	03
(b)	Obtain the equivalent circuit parameters of 20 kVA , $2500 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$, single phase transformer referred to L.V. side \& H.V. side from the following test data:				10	02	03
	$\begin{array}{\|l\|} \hline \text { OC Test } \\ \hline \text { SC Test } \end{array}$	$\frac{250 \mathrm{~V}}{104 \mathrm{~V}}$	$\frac{1.4 \mathrm{~A}}{8 \mathrm{~A}}$	105 W on L. V. Side 320 W on H. V. Side			
	Draw the equivalent circuit referred to L.V. side.						

S.Y.B.Tech.Elect - Sem III				
Q4				
(a)	Prove that for the same output and transformation ratio $\mathrm{k}=\mathrm{N} 2 / \mathrm{N} 1$, an autotransformer requires less copper than an ordinary two winding transformer.	06	02	04
(b)	A 200 kVA transformer has an efficiency of 98% at full load. If the maximum efficiency occurs at three quarters of full load, calculate the efficiency at half load. Assume negligible magnetizing current and pf 0.8 at all loads.	08	02	04
(c)	Two single phase transformers A and B rated at 250 kVA each are operated in parallel on both sides. Percentage impedances for A and B are $(1+j 6)$ and $(1.2+\mathrm{j} 4.8)$ respectively. Compute the load shared by each when the total load is 500 kVA at 0.8 p.f. lagging.	06	02	03
Q5				
(a)	Explain the different methods of speed control of 3-\$ induction motor.	10	03	06
(b)	A $100 \mathrm{~kW}, 3$-phase, 420 V , 6 -pole, 50 Hz wound rotor induction motor has a full load slip of 0.04 and the slip at maximum torque of 0.2 when operating at rated voltage and frequency. Neglect stator resistance and rotational losses. Find (a) maximum torque, (b) starting torque and (c) full load rotor ohmic loss.	10	04	05
Q6				
(a)	Write the difference between slip-ring wound and squirrel cage induction motor.	04	03	05
(b)	8 -pole, 3-phase, 50 Hz , induction motor is running at a speed of 710 rpm with an input power of 35 kW . The stator losses at this operating condition are known to be 1200 W while the rotational losses are 600 W . Find (i) the rotor copper loss, (ii) the gross mechanical power developed (iii) the gross torque developed, (iv) the shaft power output, and (v) the shaft torque.	08	04	05
(c)	What is the role of commutator in dc motor? Hence explain the process of commutation in detail.	02+06	01	07
Q7				
(a)	Draw and explain the speed/torque, torque/armature current and speed/armature current characteristics of dc series motor.	06	01	07
(b)	A 230 V dc shunt motor has an armature circuit resistance of 0.4Ω and field resistance of 115Ω. This motor drives a constant load torque and takes an armature current of 20 A at 800 rpm . If motor speed is to be raised from 800 to 1000 rpm , find the resistance that must be inserted in the shunt field circuit. Assume magnetization curve to be a straight line.	07	01	07
(c)	What is armature reaction in case of dc machine? Hence explain the demagnetizing and cross-magnetizing effect of it in detail.	$\begin{gathered} 01+03+ \\ 03 \end{gathered}$	01	07

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEMESTER Examination

November 2017

Maximum Marks: 100
Class: S.Y.B.Tech
Name of the Course: Engineering Mathematics III

Duration: $\mathbf{3}$ hour
Program:Electrical Engineering
Course Code : BTE201
Master file.

Instructions:

- Attempt any FOUR questions out of remaining SIX questions.
- Question number. 1 is compulsory.
- Answers to all sub questions should be grouped together.

S.Y B.Tech: Elet. Sem III				
	.			
(b)	Prove that $\int_{0}^{\infty} \frac{\sin 2 t+\sin 3 t}{t e^{t}} d t=\frac{3 \pi}{4}$	6	1	2
(c)	Obtain the half range sine series $f(x)=x(\pi-x) \quad 0<x<\pi$ Hence show that $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{6}}=\frac{\pi^{6}}{945}$	8	2	5
3 (a)	Prove that the following function is analytic $f(z)=\log (z)$	6	3	5
(b)	Hamilton's theorem	6	4	7
(c)	Find $\mathrm{L}\left[\frac{d}{d t}\left(\frac{1-\cos 2 t}{t}\right)\right]$	8	1	1
4 (a)	Find the Fourier series for $f(x)= \begin{cases}0 & -\pi \leq x \leq 0 \\ \mathrm{x} & 0 \leq x \leq \pi\end{cases}$	6	2	4
(b)	Find the Laplace transforms of $f(t)$, where $f(t)=\left\{\begin{array}{c} t^{2}, 0<t<1 \\ 0, t>1 \end{array}\right.$	6	1	1
(c)	If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$	8	3	5
5 (a)	Evaluate: $L^{-1}\left\{\log \left\|\frac{s^{2}+\mathrm{b}^{2}}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right\|\right\}$	6	1	2
(b)	Find non - singular matrices P, Q so that PAQ is a normal form where $A=\left[\begin{array}{cccc} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{array}\right]$	6	4	6

